Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498222

RESUMO

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Assuntos
Cisplatino , Neoplasias , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Microtúbulos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina Tiolesterase
2.
Front Bioeng Biotechnol ; 11: 1296832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116201

RESUMO

Conventional swabs have been used as a non-invasive method to obtain samples for DNA analysis from the buccal and the nasal mucosa. However, swabs may not always collect pure enough genetic material. In this study, buccal and nasal microneedle swab is developed to improve the accuracy and reliability of genomic analysis. A cytotoxicity test, a skin sensitivity test, and a skin irritation test are conducted with microneedle swabs. Polymer microneedle swabs meet the safety requirements for clinical research and commercial use. When buccal and nasal microneedle swabs are used, the amount of genetic material obtained is greater than that from commercially available swabs, and DNA purity is also high. The comparatively short microneedle swab (250 µm long) cause almost no pain to all 25 participants. All participants also report that the microneedle swabs are very easy to use. When genotypes are compared at five SNP loci from blood of a participant and from that person's buccal or nasal microneedle swab, the buccal and nasal microneedle swabs show 100% concordance for all five SNP genotypes. Microneedle swabs can be effectively used for genomic analysis and prevention through genomic analysis, so the utilization of microneedle swabs is expected to be high.

3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209900

RESUMO

Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis. In this study, we explored the novel function of the chemically synthesized bioactive lipid O-cyclic phytosphingosine-1-phosphate (cP1P) as an inducer of cardiac differentiation. Here, we identified cP1P as a novel factor that significantly enhances the differentiation potential of hESCs into cardiomyocytes. Treatment with cP1P augments the beating colony number and contracting area of CMs. Furthermore, we elucidated the molecular mechanism of cP1P regulating SMAD1/5/8 signaling via the ALK3/BMP receptor cascade during cardiac differentiation. Our result provides a new insight for cP1P usage to improve the quality of CM differentiation for regenerative therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Esfingosina/análogos & derivados , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Lipídeos/química , Lipídeos/farmacologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingosina/química , Esfingosina/farmacologia
4.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070420

RESUMO

Oct4 is an important mammalian POU family transcription factor expressed by early human embryonic stem cells (hESCs). The precise level of Oct4 governs the pluripotency and fate determination of hESCs. Several post-translational modifications (PTMs) of Oct4 including phosphorylation, ubiquitination, and SUMOylation have been reported to regulate its critical functions in hESCs. Ubiquitination and deubiquitination of Oct4 should be well balanced to maintain the pluripotency of hESCs. The protein turnover of Oct4 is regulated by several E3 ligases through ubiquitin-mediated degradation. However, reversal of ubiquitination by deubiquitinating enzymes (DUBs) has not been reported for Oct4. In this study, we generated a ubiquitin-specific protease 3 (USP3) gene knockout using the CRISPR/Cas9 system and demonstrated that USP3 acts as a protein stabilizer of Oct4 by deubiquitinating Oct4. USP3 interacts with endogenous Oct4 and co-localizes in the nucleus of hESCs. The depletion of USP3 leads to a decrease in Oct4 protein level and loss of pluripotent morphology in hESCs. Thus, our results show that USP3 plays an important role in controlling optimum protein level of Oct4 to retain pluripotency of hESCs.


Assuntos
Carcinoma Embrionário/genética , Enzimas Desubiquitinantes/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Técnicas de Inativação de Genes , Humanos , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Análise de Célula Única , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
5.
ACS Appl Mater Interfaces ; 13(20): 23532-23546, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983702

RESUMO

Ultrathin amorphous silica membranes with embedded organic molecular wires (oligo(p-phenylenevinylene), three aryl units) provide chemical separation of incompatible catalytic environments of CO2 reduction and H2O oxidation while maintaining electronic and protonic coupling between them. For an efficient nanoscale artificial photosystem, important performance criteria are high rate and directionality of charge flow. Here, the visible-light-induced charge flow from an anchored Ru bipyridyl light absorber across the silica nanomembrane to Co3O4 water oxidation catalyst is quantitatively evaluated by photocurrent measurements. Charge transfer rates increase linearly with wire density, with 5 nm-2 identified as an optimal target. Accurate measurement of wire and light absorber densities is accomplished by the polarized FT-IRRAS method. Guided by density functional theory (DFT) calculations, four wire derivatives featuring electron-donating (methoxy) and -withdrawing groups (sulfonate, perfluorophenyl) with highest occupied molecular orbital (HOMO) potentials ranging from 1.48 to 0.64 V vs NHE were synthesized and photocurrents evaluated. Charge transfer rates increase sharply with increasing driving force for hole transfer from the excited light absorber to the embedded wire, followed by a decrease as the HOMO potential of the wire moves beyond the Co3O4 valence band level toward more negative values, pointing to an optimal wire HOMO potential around 1.3 V vs NHE. Comparison with photocurrents of samples without nanomembrane indicates that silica layers with optimized wires are able to approach undiminished electron flux at typical solar intensities. Combined with the established high proton conductivity and small-molecule blocking property, the charge transfer measurements demonstrate that oxidation and reduction catalysis can be efficiently integrated on the nanoscale under separation by an ultrathin silica membrane.

6.
Plant Physiol Biochem ; 162: 388-394, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740678

RESUMO

Transpiration can directly reflect the response of the crop growth and development, therefore irrigation design based on a transpiration model is an important factor towards establishing an efficient irrigation strategy. Thus, the purpose of this experiment is to develop and verify a tomato transpiration model by correcting the relationship between the transpiration rate and environmental factors by measuring the actual transpiration rate. The actual crop transpiration rate, which is measured using a load cell, and the weight changes calculated at 10-min intervals, are applied to the development of the transpiration model. The experimental results show that the transpiration rate has no linear relationship with the radiation amount (Rad) or vapor pressure deficit (VPD). The relationship between Rad and VPD with transpiration rate was fitted by the exponential rise to maximum, and gaussian peak curve, respectively. This allowed a transpiration model to be developed by compensating the Rad and VPD based on the existing Penman-Monteith (P-M) equation. The developed transpiration model showed higher regression constant values than the existing one. The developed transpiration model from the experiment can be utilized for precise irrigation control.


Assuntos
Transpiração Vegetal , Solanum lycopersicum , Pressão de Vapor , Água
7.
Adv Mater ; 29(11)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28032923

RESUMO

Chemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects. By limiting contaminants and defects, ultrathin (<10 nm) CVD polymeric device layers have been fabricated in multiple laboratories. The CVD method is particularly suitable for synthesizing insoluble conductive polymers, layers with high densities of organic functional groups, and robust crosslinked networks. Additionally, CVD polymers are prized for the ability to conformally cover rough surfaces, like those of paper and textile substrates, as well as the complex geometries of micro- and nanostructured devices. By employing low processing temperatures, CVD polymerization avoids damaging substrates and underlying device layers. This report discusses the mechanisms of the major CVD polymerization techniques and the recent progress of their applications in devices and device fabrication, with emphasis on initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization.

8.
Adv Mater ; 28(30): 6399-404, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27167214

RESUMO

The concept of a neutral hole-transporting polymer is realized for the first time, by integrating patterned Cl(-) -doped poly(3,4-dimethoxythiophene) thin films into organic solar cells through a vacuum-based polymer vapor printing technique. Due to this novel polymer's neutrality, high transparency, good conductivity, and appropriate energy levels, the solar-cell efficiency and lifetime are significantly enhanced.

9.
Proc Natl Acad Sci U S A ; 112(45): 13774-8, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508636

RESUMO

Through phase transition-induced band edge engineering by dual doping with In and Mo, a new greenish BiVO4 (Bi1-XInXV1-XMoXO4) is developed that has a larger band gap energy than the usual yellow scheelite monoclinic BiVO4 as well as a higher (more negative) conduction band than H(+)/H2 potential [0 VRHE (reversible hydrogen electrode) at pH 7]. Hence, it can extract H2 from pure water by visible light-driven overall water splitting without using any sacrificial reagents. The density functional theory calculation indicates that In(3+)/Mo(6+) dual doping triggers partial phase transformation from pure monoclinic BiVO4 to a mixture of monoclinic BiVO4 and tetragonal BiVO4, which sequentially leads to unit cell volume growth, compressive lattice strain increase, conduction band edge uplift, and band gap widening.

10.
Adv Mater ; 25(38): 5392-423, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24115244

RESUMO

Well-adhered, conformal, thin (<100 nm) coatings can easily be obtained by chemical vapor deposition (CVD) for a variety of technological applications. Room temperature modification with functional polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real-time monitoring, and thickness control. Initiated-CVD shows successful results in terms of rationally designed micro- and nanoengineered materials to control molecular interactions at material surfaces. The success of oxidative-CVD is mainly demonstrated for the deposition of organic conducting and semiconducting polymers.


Assuntos
Química/métodos , Polímeros/química , Flúor/química , Gases/química , Humanos , Polimerização , Propriedades de Superfície , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...